Speicherung von thermischer Energie durch Flüssigssorption mit Natronlauge
Herausforderungen bei der Entwicklung eines Absorptionsspeichers

P. Gantenbein¹, X. Daguenet-Frick¹, J. Müller¹, M. Rommel¹, B. Fumey², R. Weber², K. Goonesekera³ and T. Williamson³

¹Institute for Solar Technologies SPF, University of Applied Sciences Rapperswil (CH)
²EMPA Swiss Federal Laboratories for Materials Science &Technology (CH)
³Kingspan Renewables Ltd. (Northern Ireland)
Seasonal Solar Thermal Energy Absorption Storage with Aqueous Sodium Hydroxide Sorbent and Water Vapour Sorbate

Storage System

1. External side view
2. View though the door

View 1.
View 2.

P. Gantenbein, Wien, September 2016
Seasonal Solar Thermal Energy Absorption Storage with Aqueous Sodium Hydroxide Sorbent and Water Vapour Sorbate

Motivation & Challenge

- Seasonal thermal energy storage - **low thermal losses and high volumetric energy density**
- **High renewable energy fraction** by using solar collectors and environment heat
- Thermochemical storage based on **water absorption/desorption in sodium hydroxide**

Content

- **Funktionsprinzip - Absorption**
- **Fallfilm-Technologie**
- **Messresultate: Absorption & Desorption**
- **Bewertung**

- **Frame of the development work** -

EU project COMTES lines A (adsorption), B (absorption), C (super-cooling of PCM)
Liquid sodium lye sorption energy storage concept:

Thermal heat pump principle:
- **discharging**: absorption process

→ separation of capacity (energy) & power units

Capacity

Tanks

Power

heat & mass exchangers

building (floor heating)

A-D unit

E-C unit

Vacuum

ambient (ground source)
Absorption: Function / Effect of a Absorption

- **Simple experiment:** Mixing of two transparent liquids / Sorbate & Sorbent
- **Observation:** Release of heat: Δh_B – heat of dilution / “binding energy”
- **Result:** Temperature increase $\Delta T \sim 7$ K

- **Extension:**

$$\Delta h_A(l) = \Delta h_v(v) + \Delta h_B(l)$$

Kondensationswärme
(Verdampfungsenthalpie)

Video: temperature increase
Liquid sodium lye sorption energy storage concept:

Thermal heat pump principle:
- charging: desorption process

→ separation of capacity (energy) & power units

Capacity
Tanks

Power
heat & mass exchanger

solar energy (collector field)

A-D unit
E-C unit

Ambient (ground source)
Tube bundle falling film heat and mass transfer concept:

- Successful application in absorption chillers (but fixed operation point)
- High heat transfer rates - mass transfer(?)
- Process steps combination (seasonal sequential running, costs reduction, compact)
- Tube bundle technology for the two heat an mass exchangers (A&D and E&C)
- Suitable for vacuum application
- Simple design & low costs

Schematic of the charging process step
Introduction

Heat & mass transfer units

Experimental results

Conclusion & outlook

Modelling of the tube bundle falling film / the heat and mass transfer unit:

- Model set-up and results

Schematic of a single tube bundle row model

Daguenet-Frick et al., Solar Energy, 2015

Desorber modelling

Daguenet-Frick et al., Solar Energy, 2015

P. Gantenbein, Wien, September 2016
Components description (E/C heat and mass exchanger)

- Vapour feed through: low pressure losses, radiative disconnection
- Manifold: designed to ensure an homogeneous fluid distribution
- Tube bundle unit: - A/D sized without fluid recirculation, E/C with the lower rate possible
 - most of the connections/sensors placed on the flange
Overview A/D and E/C unit:

- Vacuum tight containers (operation under exclusion of non-condensing gasses)
- Process stages combination (sequential running, costs reduction, compactness)
- Choice of the tube bundle technology for the two heat and mass exchangers (compactness)
Heat storage discharging mode (absorption process)

- Power in function of temperature difference

\[\Phi = -61.616 \Delta T + 1007.7 \]

- Exchanged power far away from numerical predictions
- Dependence of the exchanger power on the temperature difference between the evaporator and the absorber

- but in the small scale experiment the temperature lift is \(~25°C\)
Heat storage discharging mode (absorption process)

Power in function of flow rate (surface wetting)

- Absorber flow rate: $0.4 \text{ l(NaOH-H}_2\text{O)/min @ wt}=50 \%$, $T=22 \degree\text{C}$

- significant influence of the mass flow rate Γ on the absorption power as the wetting is poor at low mass flow rates.
Heat storage charging mode (desorption process)

Power in function of temperature difference

\[\Phi = 8789.8 \ln(\Delta T) - 26524 \]

- Logarithmic dependence of the exchanged power on the temperature difference between the desorber and the condenser.
Heat storage charging mode (desorption process)

- Tube bundle surface wetting

Experimental results

Condenser maximum flow rate:
- $12 \, l(H_2O)/min \text{ @ } T=20 \, ^\circ C$

Desorber flow rate:
- $0.4 \, l(NaOH-H_2O)/min \text{ @ } wt=30 \% \text{, } T=50 \, ^\circ C$

- No significant influence of the mass flow rate Γ on the desorption power as the wetting is good already by low mass flow rates.
Conclusion & outlook

Experimental results & assessments:

✓ Heat and mass exchanger design complies with the desorption process (charging)
✓ No heat transfer limitations due to the E & C unit
 ○ Absorption process (discharging) has to be improved

Outlook – further work:

✓ Absorption process improvement:
 - Increasing surface wetting fraction (surfactants, hydrophilic surface)
 - Increasing surface area (texturing, other geometry)
 - A/D unified component concept questionable
✓ Improvement of the heat and mass transfer model for the desorber tube bundle
Conclusion & outlook

Experimental results & assessments:

- Tilted surface: increasing residence time

- Test fluid: surfactant solution 1wt%, approx. 1000 μL

Video: wetting

COMTES: Combined development of compact thermal energy storage technologies

Development Line B: Thermal energy storage in a aqueous sodium lye.

Thank you for your attention!

Financial support by the European Union in the seventh framework programme (FP7 / 2007-2013) under the grant agreement No295568 is gratefully acknowledged.

We gratefully acknowledge financial support of our research institutions EMPA Swiss Federal Laboratories for Materials Science and Technology and HSR University of Applied Sciences of Rapperswil.