Solar Heat for Industrial Processes in Malaysia

From awareness to implementation

Juergen Fluch

AEE - Institute for Sustainable Technologies (AEE INTEC)
8200 Gleisdorf, Feldgasse 19, AUSTRIA
Solar Heat for Industrial processes (SHIP) has a huge potential in Malaysia.
Solar Irradiation Malaysia

Malaysia’s average solar irradiation: 1,600 kWh/m² year
Starting point

Source: Solar Thermal Roadmap for Malaysian Industries, UNIDO
SHIP potential and targets

- **Roadmap target - 2025 (total)**

 - **Solar thermal capacity:**
 - Industries: $4,300 \text{ MW}_{th}$
 - Hotels: 398 MW_{th}
 - Hospitals: 159 MW_{th}
 - Total: $4,857 \text{ MW}_{th}$

 - **Collector area:** $1,340,000 \text{ m}^2$

 - **Investment needed:** $385 \text{ [Mio}\euro\text{]}$

 - **CO2 savings:** $1,738 \text{ [ktoe]}$

 - **Jobs creation:** $6,120 \text{ [-]}$

Solar thermal capacity potential
But how without a solar community?
Training setup

- **Local experts - PMU**
 - 1-day awareness training
 - 2-day basic training

- **Trainee group**
 - T1, T2, T3, T4, T5

- **Host company**
 - 4-day training EE
 - 4-day training SHIP
 - Training on the job

- **Support by AEE INTEC**
Appropriate tools for SHIP identification and quick design

- Expertise SHIP linked to EE
- Accompanying tools used along training and in future SHIP community in Malaysia and Egypt

- Demand
 - quick design of SHIP
 - including process/supply demand, components, collector types, placement, orientation
 - as basis for
 - detailed system simulation so called pre-design
 - first assessment on technical and economic feasibility
 - convincing and support of industry in decision on further design towards implementation
 - double check of received concepts from external experts and offers from solar companies
Key sections of SHIP Tool

(1) Process integration
 - Integration concept
 - Process heat exchanger
 - Yearly process load profile

(2) Solar concept
 - Collector definition
 - Climate definition
 - Key component sizing (collector field, storage)
 - Yearly analysis for system evaluation and KPIs

(3) Techno-economic comparison
 - Levelised cost of heat
 - Comparison of up to 10 scenarios
Process Load Profile

load profile "monday"

- Yearly profile with hourly values

load profile "week"

- Yearly profile with weekly values

load profile "year"

- Yearly profile with hourly values
Collector selection, sizing and placement

Definition of solar thermal collectors

<table>
<thead>
<tr>
<th>Collector efficiency coefficients</th>
<th>Length</th>
<th>Width</th>
<th>Aperture area</th>
<th>Gross area</th>
</tr>
</thead>
<tbody>
<tr>
<td>c_0</td>
<td>c_1</td>
<td>c_2</td>
<td>L (m)</td>
<td>W (m)</td>
</tr>
<tr>
<td>[·]</td>
<td>[W/(K·m²)]</td>
<td>[W/(K²·m²)]</td>
<td>[m]</td>
<td>[m]</td>
</tr>
</tbody>
</table>

Arcon HT-A 28/10
- c_0: 0.839
- c_1: 3.2
- c_2: 0.0137
- L: 2.27
- W: 5.96
- A_{ap}: 12.54
- A_{gr}: 13.57

Arcon HT-SA 28/10
- c_0: 0.817
- c_1: 2.205
- c_2: 0.0135
- L: 2.27
- W: 5.96
- A_{ap}: 12.52
- A_{gr}: 13.57

Collector efficiency curves

![Collector efficiency curves diagram](chart.png)

- ΔT (mean collector temp. T_m - ambient temp. T_a)
- Nominal efficiency of chosen collector
- Arcon HT-A 28/10
- Arcon HT-SA 28/10
- Ritter XL Solar - CPC 45 XL
- Ritter XL Solar - Aqua Plasma 19/50
- Kingspan DF400
- Kingspan FPW25
- [Other curves]
Climate framework

Define location

Hourly Data!!!

Define slope and azimuth

Ensure other settings are as shown here!
Yearly analysis and KPIs

Solar yield [kWh/a]: 1,948,929
Spec. solar yield [kWh/m².a]: 743
Solar heat delivery [kWh/a]: 1,697,508
Spec. solar heat delivery [kWh/m².a]: 737
Solar fraction: 61.5%
Utilization rate (weighted yearly collector efficiency): 49.2%
Heat losses storage [kWh/a]: 14,963
Stagnation losses: 3.5%
Yearly analysis as basis for scenario analysis
Implementations in Malaysia

- Energy efficiency → 95 single measures

- SHIP investment procedure
 - Up to 30% of investment costs funded
 - Applying SHIP tool → standard project development
 - Presented to industry and investors
 - Concept presented to industry
 - Call for tender and received offers
 - Confirmation by Task Force
 - Investment by industry, „re-financing“ after commissioning and paid invoice
Implementation SHIP and project pipeline

- Project focus: industry, hospitals, hotels

- Implementations
 - 3 finished
 - 4 pending

- Beside implementations achieved / envisaged
 - Tender phase: 7 projects
 - Decision phase: 14 projects
 - Concept phase: 26 projects
 - Technical support: 5 projects

- Monitoring phase in 2 companies ongoing
The existing hot water system is supplied by an electric boiler. The solar thermal system covers 80% of the thermal process demand, producing hot water at a temperature of 91°C.

- Collector Area: 119 m²
- Storage volume: 8 m³
- Annual savings: RM 71,700
- ROI: 3.2 years
- CO₂ savings: 266 t/a

1st Runner Off-grid: Thermal Category
Financing via TrustEE

- Transaction costs to be minimised
- Risk management
- Assessment of developed projects
- Due diligence
- Standardised and semi-automated project assessment
- Based on high-level background simulation
- Service for investors

TrustEE stamp

PROJECT LIFECYCLE

DEVELOP & INSTALL
Outlook

- **Malaysia**
 - Overcome COVID-19 phase
 - Roadmap deployment as part of upcoming green legislation act
 - Expert certification requested by government in order to follow standardised procedures
 - Frontrunners push industry
 - TrustEE implemented in Malaysian financing scheme
SHIP has a huge potential not only in Malaysia

…but worldwide!
Renewable Heating and Cooling in Integrated Urban and Industrial Energy Systems

#ISEC2020 - a Forum for Research, Business and Energy Policy

Topics and Call for Papers: April 2020
14th - 16th October 2020
Congress Graz, Austria