

DeStoSimKaFe

Konzeptentwicklung & gekoppelte deterministisch/stochastische Simulation und Bewertung Kalter Fernwärme zur Wärme- & Kälteversorgung

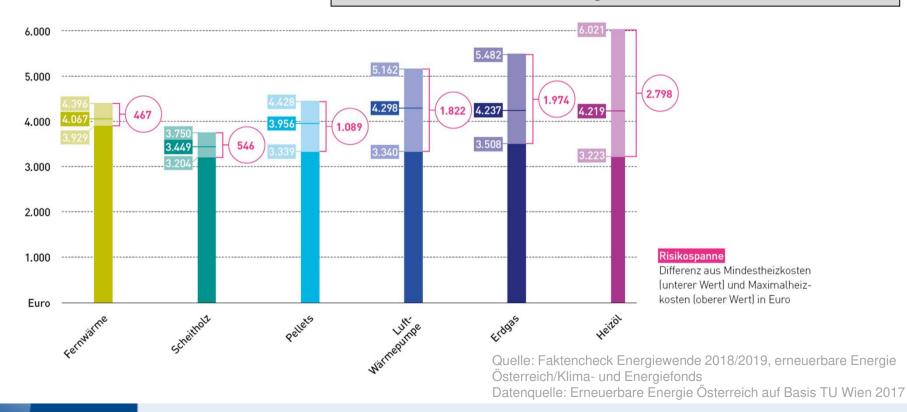
Harald Schrammel

AEE – Institut für Nachhaltige Technologien (AEE INTEC) 8200 Gleisdorf, Feldgasse 19, Österreich

Projektteam

- Projektleitung
 - Hermann Edtmayer
 - AEE Institut f
 ür nachhaltige Technologien (AEE INTEC)
- Projektpartner
 - Institut für Wärmetechnik, TU Graz
 - anex Ingenieure AG
 - Energieinstitut Vorarlberg
 - 3F Solar Technologies GmbH
 - Ochsner Energietechnik GmbH

- Laufzeit: 2 Jahre, von [09/2018] bis [08/2020]
- Energieforschungsprogramm 2017



Warum (kalte) Fernwärme?

Um die Pariser Klimaziele zu erreichen, ist eine vollständige Dekarbonisierung der Wärme- und Kälteversorgung erforderlich.

Innovative Konzepte für Wärme- und Kältenetze werden als eine Schlüsseltechnologie betrachtet.

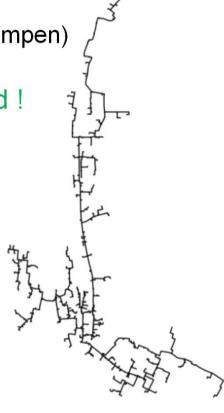
Kalte Fernwärme (Nahwärme) Merkmale und Vorteile

- Kalte Fernwärme (KaFe) oder Anergienetze
 - Systemtemperaturen < 30°C
- Niedertemperatur-Wärmequellen nutzbar machen
 - Abwärme, Erneuerbare, Umgebungswärme
- Geringe/Keine Transportverluste
 - Ungedämmte Rohrleitungen
- Signifikante Primärenergieeinsparung

Bildquelle: anex Ingenieure AG

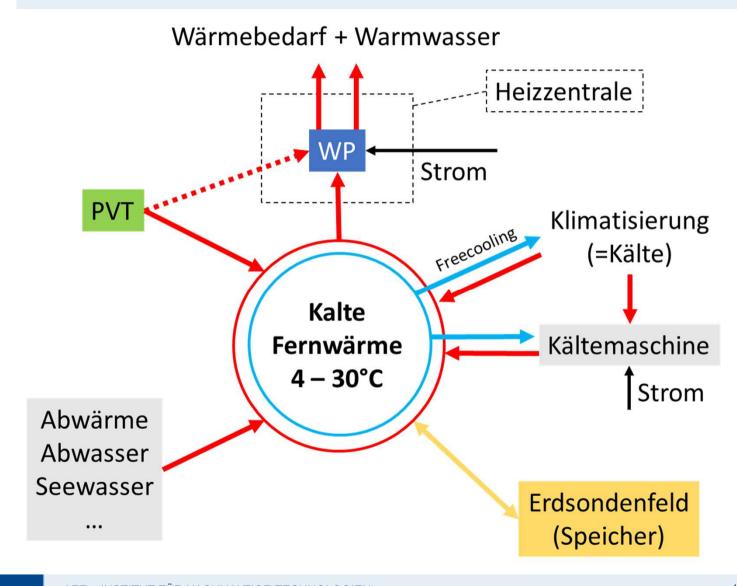
- Wärme- und Kälteversorgung mit gleicher Infrastruktur
- Hohes Maß an System-Flexibilität
 - Integration verschiedenster Quellen und Senken / Netzausbau
 - Prosumer und Interaktion mit anderen Energiesystemen
 - Speicherung und Netztopologie

Netztopologie und Hydraulik


- System "Anergienetz" aus der Schweiz
 - Ring-/Maschen-Topologie

hydraulisch ungerichtet (keine zentralen Netzpumpen)

Beides ist für kalte Fernwärme nicht zwingend!


- Klassische Baumstruktur genauso möglich
 - Kann Ringe/Maschen enthalten!
- Konventionelle Hydraulik ebenso möglich!

Topologie und Hydraulik sind keine Alleinstellungsmerkmale für kalte Fernwärme!

Alles denkbar! Alles möglich?

Herausforderungen

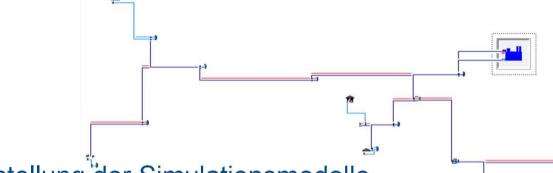
- Anwend- und Umsetzbarkeit von kalter Fernwärme verbessern.
- Funktionstaugliche und umsetzbare technische Systemlösungen
 - für wechselnde Rahmenbedingungen
- Technisch-/wirtschaftliche Optimierung
- Herausforderung "Grüne-Wiese-Projekte"
 - Henne / Ei Problem
 - Kritische Start-Phase
- Verbindliche Energiepreise/Angebote/Versorgungsgarantie

Zielsetzungen

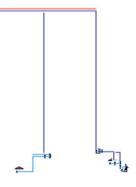
Technische Systemlösungen für kalter Fernwärme

- Deterministisches Modell
- Jahressimulationen des Gesamtanlage
- Systematische Konzeption und Bewertung
- Optimierte Regelungskonzepte
- Einbezug von Systemkoppelungen

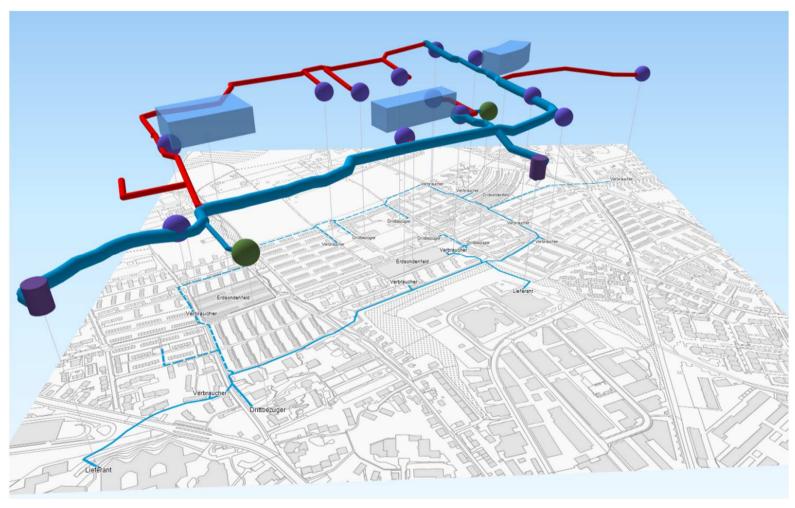
Langzeitevaluierung mit veränderlichen Rahmenbedingungen


- Stochastisches Modell
- gesamter (Lebens-/Investitions-)Zyklus
- Rahmenbedingungen:

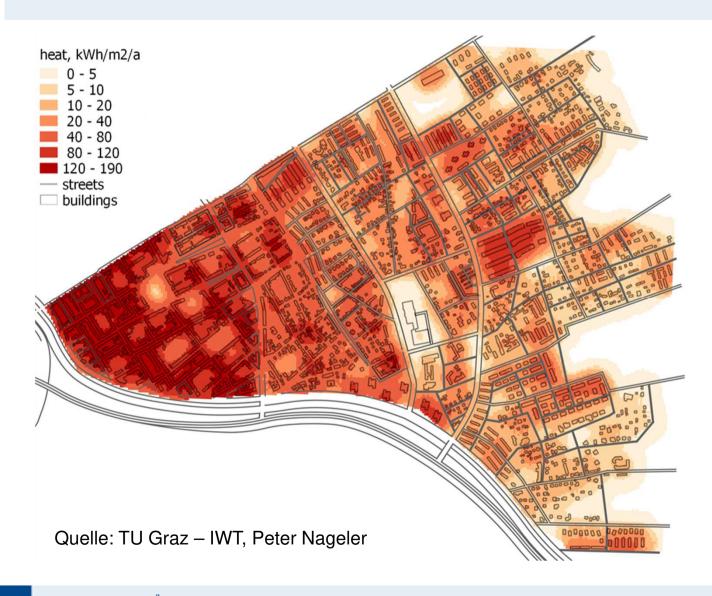
Sanierung/Nutzungsänderung, Klimawandel, Verhältnis Wärme/Kälte, Wegfall von Quellen,...


Ökonomische Bewertung Entwicklung von KaFe-Produkten und Services

Derzeitige Arbeitsschwerpunkte



- Erstellung der Simulationsmodelle
 - Schrittweise Erweiterung des Basismodells
 - Validierung mit realen Betriebsdaten
- Konzeption von Systemvarianten
 - Virtuelles Stadtquartier mit variierenden Rahmenbedingungen
 - Realisierte Anlage
 - Reale Quartieren / Entwicklungsgebiete
- Evaluierung von Flexibilitätspotentialen
 - Subnetze + Speicher + Gebäude
 - Ziel: Systemkopplung


Simulationsentwicklung 3D-Modell (GIS) eines Anergienetzes

Quelle: AEE INTEC, anex Ingenieure AG

Virtuelles Stadtquartier – "Spielwiese" für Simulation und Langzeitevaluierung

Zusammenfassung

- Anergienetze können einen entscheidenden Beitrag zur Dekarbonisierung der Fernwärme leisten
 - Bislang ungenutzte Wärmequellen
 - Vermeidung von Verlusten
 - Gleichzeitige Kälteversorgung
 - Systemkoppelung
- Verbesserung der Anwendbarkeit systematische Konzeption und Bewertung
 - Alternative Systemkomponenten
 - Flexibilitätspotentiale
 - Planungssicherheit
- Langzeit-Systemanalyse
 - Hohe Systemkomplexität
 - Viele Abhängigkeiten und Einflussfaktoren

Danke für Ihre Aufmerksamkeit