Nachträgliche Bauteilaktivierung in der Sanierung - ein Praxisbeispiel

Bauteilaktivierung im Fokus – Speicherpower für die Energiewende / 7.10.2025

Tobias Hatt, Energieinstitut Vorarlberg

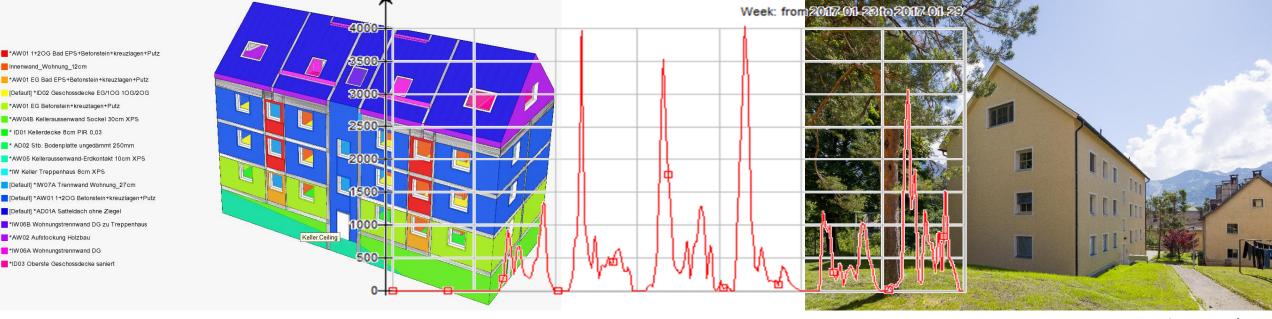


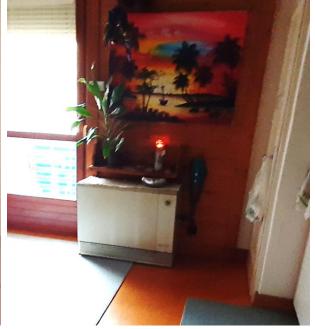
Foto: Dietmar Walser

Bundesministerium Klimaschutz, Umwelt, Energie, Mobilität, Innovation und Technologie

Zwei Pilotgebäude 2023-2024 saniert

Nun messtechnisch überwacht

- Zwei als erhaltenswert eingestufte Gebäude mit 6 und 11 Wohnungen, Neubau Dachgeschoß (2 Wohnungen)
- Hoher energetischer Standard der Sanierungen (EnerPHit Plus)
- Umstellung auf Wärmepumpe; Trinkwarmwasser mit Frischwasserstationen,
- Einbau einer zentralen Komfortlüftung mit WRG,
- Süddächer vollflächig mit PV belegt, Mieterstrommodell


Fotos: Dietmar Walser


Haustechnik vor Sanierung

Kein hydraulisches Verteil- und Abgabesystem vorhanden

- Vorher: Heizstruktur zweier Gebäude (oft auch in den einzelnen Räumen unterschiedlich)
 - Elektrisch (Radiatoren 17%, Nachtspeicheröfen 6%, Infrarotpaneele 28%, Heizlüfter) Einzelöfen (Stückholz 28%, Pellet 11%, Kohle 11%)
 - Warmwasser elektrisch direkt mit E-Boilern

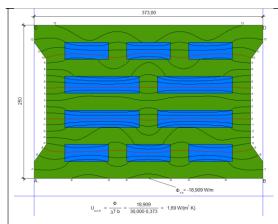
Fotos: Bauaufmass Maurer E.U.

Energieinstitut Vorarlberg

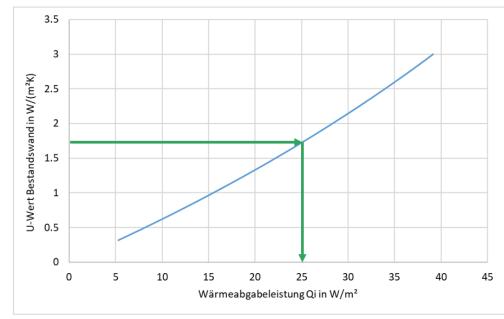
Bauteilaktivierung Bestandswand von außen

Aufbau sollte für eine vorgefertigte Fassade anwendbar sein

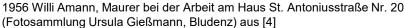
- Wasser zum Rohr
- 2. Rohr zur Wand
- 3. Durch die Wand
- 4. Wand zu Raum



Betonhohlstein gefüllt 290 mm + Kalkzementputz 20-30 mn Durchbruch/Kernbohrung Lüftungsrohr


Wärmedurchgang durch die Bestandswand

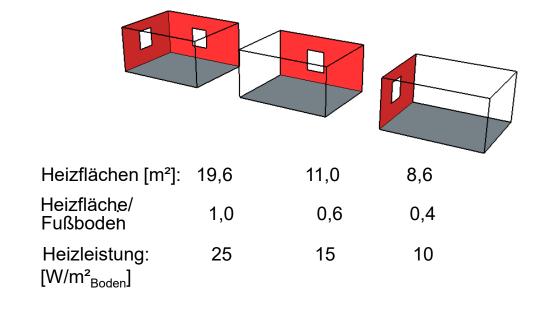
Hohlblocksteine aus Splittbeton/Berechnung und Messung U-Wert



25 cm Hohlblockstein mit 5 Hohlraumreihen mit einem U-Wert von 1,69 W/(m²K)

HTC 18,7 W/(m²K); Fluidtemperatur 37,5°C; <u>Ti</u> 22°C; <u>Ta</u> -10°C; 30cm Überdämmung Parameterstudie mit IDA ICE

→ Bei einem U-Wert von 1,7 W/(m²K) ist die Wärmeabgabe an der Wand innen ca. 25 W/m²



Verhältnis Heizfläche zur Raumgröße

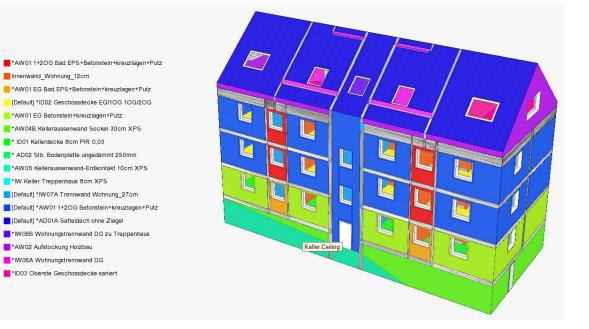
Nicht analog zu Fußbodenheizung

- Bei der Fußbodenheizung nimmt die Wärmeabgabefläche (Fußboden) linear zur Raumgröße zu.
- Bei der Wandheizung hängt das Verhältnis Wärmeabgabefläche (Außenwand) zur Raumgröße von verschiedenen Faktoren ab
 - Anzahl Außenwänden (z.B. Eckräume)
 - Raumgeometrie
 - Raumhöhe
 - Fensterflächen
- Bei Zwischengeschoßen meist nicht problematisch, da Heizlast und Außenwandfläche korrelieren. Dachgeschoß und EG sind oft kritischer.

Fußboden 20 m² Wandheizung 25 W/m²_{Wand}

Möblierung, Spülkästen etc.

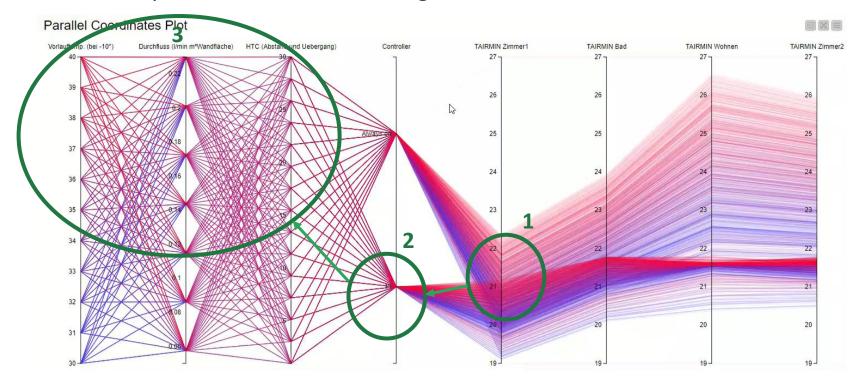
Leistungsminderung der Wandheizung


- Außenwand in den Bädern ist von innen stark zusätzlich verbaut
- Spülkasten gefüllt mit kaltem Wasser in Vorsatzschale
- Leitungen in Vorsatzschale
- Badewanne Stirnseite grenzt an Außenwand an

Modell für Gebäude- und Anlagensimulation

Sankt-Antonius Straße 12a

Dynamische Gebäude und Anlagensimulation mit den vorher in Parameteruntersuchungen bestimmten Randbedingungen zu Verlegung, Wärmeleitblechen, U-Werten und Dämmniveau


- 3D (BIM) Modell vom Gebäude als Grundlage
- Wohnungen raumweise zoniert (1 Zone = 1 Raum)
- Gebäude und Anlagensimulation in IDA ICE (V5)
- Randbedingungen meist nach SIA 2024:2021
- Klimadatensatz Meteonorm für Standort

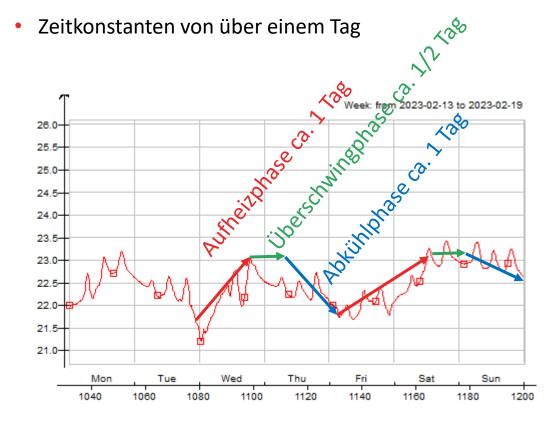
Teilergebnisse der Parameterstudie

Vorlauftemperatur mit Einzelraumregelung

 Bei Raumtemperaturen von 21-22°C im kritischen Raum und Einzelraumregelung sind Vorlauftemperaturen von 38°C nötig, aber auch höherer Durchfluss und HTC.


^{*} Ergebnisse vor Anpassung der Wärmebrückeneffekte

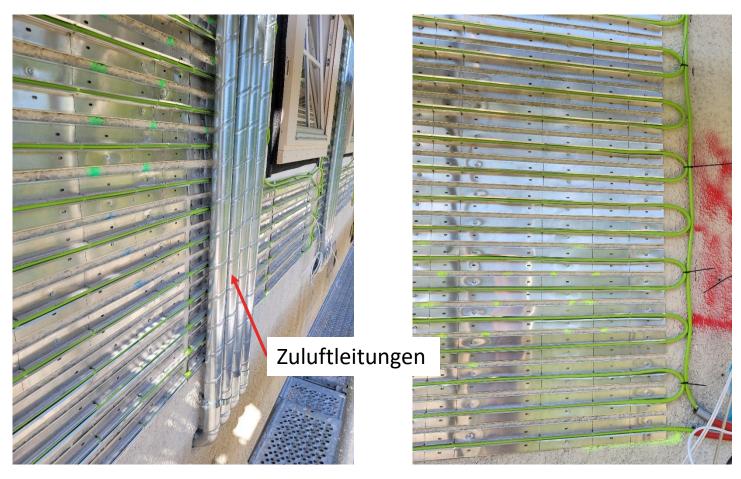
Nordraum I


Temperaturen kalte Winterwoche (-9°C)

- In kalter Winterwoche konstanter Betrieb der Wandheizung
- Heizkurve (VL) "passt" für Raumtemperatur von 22°C

- Einzelraumregelung, Trägheit des Systems
- Keine schnelle Reaktion auf Nutzeränderungen möglich

Südraum



Baustellenbilder

Bauteilaktivierung Außenwand

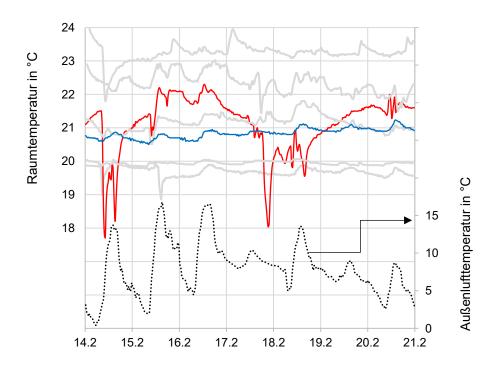
Belegung mit System CEPA mit 12,5 cm Verlegeabstand und Wärmeleitblechen auf Putz

Baustellenbilder

Holzkonstruktion und Dämmung

Baustellenbilder

Heizkreisverteiler Wandheizung



 Jeder Raum hat einen eigenen Heizkreis und Einzelraumregelung. Der Durchfluss wird pro Kreis mit hydraulischem Abgleich getrennt eingestellt.

Erste Monitoringergebnisse aktivierte Wand

Raumtemperaturen Wohnen 14-21. Februar 2024

- Regelung seit Mitte Februar 2024 aktiv, aber noch nicht komplett.
- Räume zwischen 19-24°C (in grau), bei Lüften auch kälter. Die Raumthermostateinstellung (Solltemperatur) ist hierbei aber nicht bekannt.
- Südraum mit Einzelraumregelung(in rot), welcher die Regelcharakteristik mit der hohen Trägheit des Systems aus der Simulation qualitativ bestätigt.*
- Nordraum (in blau) bei dem die Regelung konstant "on" ist.

Energieinstitut Vorarlberg

^{*}Die Ausschläge nach unten (18°C) sind durch Fensterlüftung bedingt und unabhängig vom Wärmeabgabesystem.

Gegenüberstellung Wandheizung/Heizkörper

Zu Kosten kann noch keine abschließende Aussage gemacht werden

Wandheizung

Vorteile:

- Kein Eingriff in den Wohnungen (bewohnt)
- Kühlung möglich (mit Einzelraumregler)
- Einspeichern von Überschussstrom mit WP
- Mit vorgefertigter Fassade schneller Bauablauf
- Kein Platzbedarf in den Wohnungen

Niedertemperaturheizkörper

Vorteile:

- Einfaches, bewährtes System in der Bauausführung
- Einzelraumregelung mit Thermostaten, damit individuell anpassbar und ein dem Nutzer bekanntes System
- Robust gegenüber Änderungen z.B. Raumnutzung
- Geringere Investitionskosten (laut Angeboten)

Nachteile:

- Schlechtere Regelbarkeit durch Trägheit (auch bei Einzelraumregler)
- Höherer Strombedarf inkl. WP (in der Berechnung)
- Bauliche Umsetzung komplex, da noch kein Standardprodukt
- Großflächige Möblierung von Außenwänden eingeschränkt

Nachteile:

- Eingriff in den Wohnungen nötig
- Kühlung nicht signifikant möglich (kleine Fläche)
- Nutzerakzeptanz durch "kalte" Oberflächentemperaturen vermutlich niedriger als bei Standardheizkörpern
- Platzbedarf in den Wohnungen
- Keine Speichermöglichkeit

